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F O R C E D  O S C I L L A T I O N S  O F  A G A S  B U B B L E  

[N A S P H E R I C A L  V O L U M E  OF A C O M P R E S S I B L E  L I Q U I D  

1%. I. Nigmatulin~ I. Sh. Akhatov,  and N.  K. Vakhitova UDC 533.2 

A spherically symmetric problem of oscillations of a single gas bubble at the center of a spherical 
flask filled with a compressible liquid under the action of pressure oscillations on the flask wall is 
considered. A system of differential-difference equations is obtained that extends the Rayleigh- 
Plesset equation to the case of a compressible liquid and takes into account the pressure-wave 
reflection from the bubble and the flask wall. A linear analysis of  solutions of this system of 
equations is performed for the case of harmonic oscillations of the bubble. Nonlinear resonance 
oscillations and nearly resonance nonharmonic oscillations of the bubble caused by harmonic 
pressure oscillations on the flask wall are analyzed. 

I n t r o d u c t i o n .  Let us consider the spherically symmetric motion of a compressible liquid in a spherical 
flask of radius R about a spherical gas bubble located at the center of the flask. 

If the pressure perturbations are small so that liquid-pressure variations can be ignored, and 
the wavelength of the liquid ul t imate is much greater than the bubble radius, an incompressible liquid 
approximation is usually employed for the mathematical  modeling of the bubble oscillations. In this case, 
the equation of liquid motion around the bubble is reduced to the known Rayleigh-Plesset equation [1-3] 

dw,~ 3 2 Pa -pcr  da 2or 4#w,, 
- - - ,  w a  P a  = p g ( a )  - - ,  (1) a--~'--4"'2 wa p = ~ - '  a a 

where a is the bubble radius, p, #, and a are the density, viscosity, and surface-tension coefficient of the liquid, 
respectively, wa and Pa are the radial velocity and pressure of the liquid at the bubble surface, Pa is the gas 
pressure in the bubble, and pcr is the liquid pressure away from the bubble. 

Previously, the effect of the liquid compressibility on bubble oscillations was taken into account by 
introducing the so-called losses in acoustic radiation [2, 3], which led to the Herring-Gilmore equation 

- -  a d ( p a - p ~ )  dwa 3 2 P,~ P~ + (2) 
a - - ~  + -~ wa = p pc dt 

(c is the speed of sound in the liquid). 
The dynamics of cavitation bubbles in a supersonic field for both compressible and incompressible 

liquids was analyzed in detail in [4, 5]. An approximate theory of radial oscillations of a spherical bubble 
in an infinite, weakly compressible liquid under  the action of an acoustic field was developed in [6, 7]. A 
system of equations including Eq. (2) and other equations from [2, 3] as particular cases was obtained. It is 
shown that  all these equations are equivalent since they have the same order of accuracy for the liquid Mach 
number. In the derivation of these equations it was assumed that  bubble oscillations do not affect the acoustic 
pressure at infinity. Actually, since the liquid is infinite, the problem of bubble oscillations can be considered 
independently of the acoustic problem in the liquid. 
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In the  work presented here, the coupled problem of oscillations of a limited liquid volume and a gas 
bubble is s tudied for the case where the flask wall is a source of liquid oscillations. It is shown that  the bubble 
oscillations are described by a Herring-Gilmore-type equation, in which the external pressure (outside the 
bubble) is related to the bubble-radius variation and the pressure on the flask wall by a differential-difference 
equation. This  external pressure differs from both the pressure at local infinity [p~ in Eq. (2)] and the pressure 
on the flask wall PR. 

S y s t e m  of E q u a t i o n s  for  t h e  B u b b l e  R a d i u s .  In the case of low Mach numbers (Ma = w a / c  << 1), 
the space between the bubble surface and the flask wall can be divided into three zones: 

1. An outer zone, where the weak compressibility of the liquid is essential but the nonlinear forces of 
inertia due to convective accelerations are negligibly small. In this zone, the motion of the liquid has a wave 
form and is characterized by a finite constant velocity of perturbation propagation. 

2. An inner zone (near the bubble surface), where the liquid compressibility is negligibly small. In this 
zone, the  nonlinear forces of inertia due to convective accelerations are significant and the liquid moves as a 
result of bubble compression and expansion. 

3. An intermediate zone, where the liquid compressibility and the nonlinear forces of inertia are rather 
considerable. 

To obtain an equation for the bubble-radius oscillations, it is necessary to join, in the intermediate 
zone, the  asymptotic solutions for the outer and inner zones using the conditions of continuity for the flow and 
pressure. The  required equation of bubble oscillations in a compressible liquid in a long-wave approximation 
has the form [8, 9] 

3 d2 _ Pa - p_________~0 + 1 [2~2(t) + Q(t)], Q(t)  = a2h, (3) aa+  p 

where r is the part of the liquid-velocity potential that  describes the wave propagating from the flask wall 
to the bubble,  multiplied by the radial coordinate r, and p0 is the initial pressure in the flask. The pressure 
on the flask wall is related to r by the equation 

pR( t )  = PO -~ 

where R is the flask radius�9 
Equat ion (3) leads to the following expression for the pressure peo, which is the pressure away from 

the bubble (at local infinity) in Eq. (1): 

P por = p0 - + O(t)]. 
C 

It is important tha t  the solution depends on the third derivative of the bubble radius, as noted in 
[6]. However, in a long-wave approximation, for low Mach numbers one can use an asymptotic form without 
the third derivative for the term (2/c,  which defines the bubble effect on the reflected wave. In this case, the 
evolution of the radius is described by the equation 

�9 - a d [Pa --  P , ]  (1 - ~ ) a a +  ~ 3 ( 1 -  ~---~)62 : ( 1 -  a ) P a  P P.___.._.~I + c --~ [------~J ' (5) 

where Pl = Po - (2p/c)~b2. The system of ordinary differential-difference equations (4) and (5), comprising 
both the  delayed and advanced potentials,  is closed at specified density p, speed of sound c, surface tension 
~r and viscosity # of the liquid, the equation of state for the bubble gas pg(a), and the liquid pressure on the 
flask wall pR(t ) .  

We note that gas supercompression and luminescence (sonoluminescence) can occur during bubble 
collapse, when the liquid compressibility approximation in the boundary layer near the bubble is invalid. 
Nevertheless, bubble collapse takes a very small fraction of the bubble oscillation period. In this t ime interval, it 
is necessary to take into account the liquid compressibility near the bubble wall and formation and propagation 
of shock waves in the liquid and gas [10]. 
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D i r e c t  P r o b l e m .  Let us consider the problem of the evolution of the bubble radius a(t) where the 
liquid-pressure variation on the flask wall pR(t) is specified. 

In the general case, a solution of the direct problem of bubble radius evolution can be obtained by 
numerical integration of the partial differential equations describing the motion and compression of the liquid 
and the gas, as was done in [10]. In [10], the  problem was solved under the condition that the pressure on the 
flask wall varied according to the harmonic law 

f po, t o, 
pR(t) 

PO -- ApR sin (wt), t > 0. (6) 

Such a calculation requires high computer power. Because of lengthy computations, the evolution of the radius 
was found only for the first period of oscillations of the external pressure field but not for the periodic regime, 
which occurs after many periods ,of oscillations. 

Figure 1 shows calculation results for the evolution of the radius of a gas bubble (a0 = 10/~m) in a flask 
(R = 5 cm) filled with water (initial conditions p0 = 1 bar and To = 300 K) with the pressure on flask wall 
varying according to the harmonic law (6) with an amplitude of ApR= 0.25 bar and frequency f = 45 kHz 
(w = 27r f) .  The first oscillation is in agreement with the calculation result of [10] (the dashed curve). However, 
calculation of the further evolution of the bubble radius shows that the second oscillation differs from the 
first, the third differs from the second, and a periodic regime occurs only after many oscillations (t >> w-l) .  
The long period of establishment is due to the high inertia of the liquid in the flask. Exactly the mass of the 
liquid (~pR a) delays realization of the periodic regime of pressure variation near the bubble (at local infinity) 
p~. The delay of the periodic regime for bubble oscillations after establishment of the periodic regime for p~ 
is much shorter since it is determined by the attached mass of the liquid around the bubble (,~pa 3 << pR3). 

We note that precisely a periodic regime is observed in experiments on sonoluminescence [11] and, 
therefore, it is important and interesting to consider solutions that describe periodic oscillation regimes. 

Forced  L inear  Osci l la t ions .  The problem has two characteristic frequencies: the flask resonance 
frequency wR = Irc/R, determined by the t ime of propagation of acoustic waves tR = 2R/c at distance 2R 
from the flask wall to its center and back, and the eigenfrequency of free oscillations of the bubble (Minaert's 

frequency) Wa = ~/37po/a2p. 
Let us consider forced harmonic osciUations of the form A exp (iwt) with angular frequency w. Then, the 

response function, calculated as the ratio of the relative amplitude of bubble-radius oscillations A= = Aa/ao 
to the relative amplitude of oscillations of the forcing pressure Apa = ApR/po, can be represented as a 
function of the nondimensional frequency ~ = w(R/~rc). Figure 2 shows the amplitude-frequency response 
of harmonic oscillations of a bubble in a flask of radius 5 cm filled with water (in Fig. 2a, the solid curve is 
calculated for a0 = 10/~m and ~a = 2.16 �9 106 sec -1 and the dashed curve is calculated for a0 = 500 ~m and 
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wa = 41.03- 103 sec-1; the curve in Fig. 2b is calculated for a0 = 100 pm and wa = 2.06.105 sec-1). 
As should be expected, resonance for the absolute value of the response function [Aa/ApR[ is observed 

at & ~ 1, 2, 3, . . . .  This is flask resonance: wk = 2~rfk = kTrc/R = kwR (k = 1, 2, 3 , . . . )  and, when the bubble 
is rather small, it cannot significantly change the resonance frequencies. Thus, for a flask of radius R = 5 cm 
filled with water, the first resonance frequency is f l  ~-, 15 kHz (wl = 94.2- 103 sec-1). 

The influence of the bubble  on the resonance frequencies is marked only when the excitation frequency 
of the flask wall is comparable to the Minaert frequency of bubble oscillations wa (the curves in Fig. 2 
calculated for a0 = 100 and 500 pm). 

It is interesting that the smaller the bubble, the greater the response [Aa/ApR[ (compare the curves in 
Fig. 2 for a0 = 10 and 500 pm).  This is proved by sonoluminescence of very small bubbles (a0 = 4-10 tim). 

For forced oscillations with frequencies close to the resonance frequencies, a nonlinear analysis is 
required, where there is large-amplitude nonharmonic response of the bubble radius to external action Aa ,~ a, 
which is possible even for small sinusoidal oscillations of the flask-wall pressure ApR << P0. 

N o n l i n e a r  A n a l y s i s  o f  R e s o n a n c e  F requenc i e s .  Nonlinear periodic solutions for the flask 
resonance w = wl~ = kTrc/R (k = 1, 2, 3 , . . . )  are obtained. For the periodic regime caused by sinusoidal 
pressure oscillations on the flask wall pR(t) = po - APR sin (wkt),  the nonlinear periodic solution has the form 

a 3 = a  l + c , + s i n  k t +  , a,  = ~r2k2pc2 , araax 

The solution should be t reated as an ideal periodic regime since it is obtained for the limiting case of an 
ideal, weakly compressible liquid and an incompressible boundary layer around the bubble, which assumes 
the absence of any dissipation mechanism. 

The exact value of the integration constant c, is determined numerically from the condition that the 
flask-wall velocity and its motion are also periodic. The solution has the important parameter  a , ,  which 
determines the maximum bubble  radius amax, which, in practice, does not depend on the initial radius a0 
for the ideal resonance regime. In order that bubble collapse and sonoluminescence proceed in the resonance 
regime, the condition ami n << a0 << amax "~ a,  must be satisfied. However, one should take into account 
that the minimum value of the bubble radius amin cannot be considered physically realizable since for strong 
compression, the Mach number  cannot be considered low. 

The ideal periodic resonance regime shown in the right part of Fig. 1 corresponds to the third flask 
resonance f = fs = 45 kHz. In this case, the maximum radius is amax = 454 ttm, which is in agreement with 
Eq. (7). 

For small deviations from the resonance frequencies w = w/: + Aw, and Aw << wk, where wk = 7rkc/R 
(k = 1, 2, 3 , . . . ) ,  the bubble-radius oscillations under periodic perturbations are described by the equation 

~...~w.jaa + (3 _ 2..~.~w "~ . 2 

p p A w A P R  t +  + - ~ - ~  a - P o - ~ A P R  t +  . (8) 

288 



a/a 

100 

50 

0 t)  m s e c  0.1 0.2 

a/a o 

101 

100 

10 -1 

l 

j / /  /// i}! '", "'"'-. 

-31c- 

........ :'-::L-:'. .......... 
I 

-0.02 -0.01 0 0.01 Aa.)/to 

Fig. 3 Fig. 4 

This equation includes an important nondimensional parameter that describes bubble oscillations in the near- 
resonance regime: 

A, = aOWk 
RAw'  

which is the product of the small parameter ao/R and the large wk/Aw parameters. Equation (8) is obtained 
under the assumption that  A, << 1. In this case, in contrast to the resonance case (Aw = 0), the bubble 
pressure determines its oscillations. For Aw ~ 0 (A, ---* oc), Eq. (8) is reduced to Eq. (7) for the resonance 
ca~e. 

Figure 3 shows calculation results for the characteristic near-resonance regime of bubble oscillations 
(a0 = 4/~m) in a flask (R = 5 cm) filled with water (p0 = 1 bar and To = 300 K) with the pressure on the flask 
wall varying by the harmonic law (6) with an amplitude ApR = 0.15 bar and frequency f = 26.5 kHz. The 
solid curve to the right shows the ideal periodic regime close to the resonance case ( f  ~ f2, A f  = -3 .5  kHz, 
and Aw = --22.103 sec-1). The larger-amplitude oscillations correspond to the ideal resonance regime (the 
dashed curve). 

Curves 1-3 in Fig. 4 represent the dependences of amin and amax on the frequency shift from the 
frequency of the third flask resonance for a0 = 4/~m and ApR = 0.001, 0.01, and 0.02 bar, respectively. The 
resonance case (Aw = 0) is shown by points. Near the resonance frequency, the results are shown by dashed 
curves since, in this region, Eq. (8) ceases to be valid. 

H e a t - T r a n s f e r  Effec ts .  The heat-transfer processes inside the bubble and the heat exchange between 
the bubble and the liquid can play an important role for oscillations of a gas bubble. For a detailed analysis of 
these processes, we use the model proposed in [12] (see also [3]). It is based on the following approximations: 

1) The gas pressure in the bubble pg is spatially uniform and depends only on time (homobaric 
conditions); 

2) The liquid temperature differs little from its value in the unperturbed state To. Then, to find the 
gas pressure in the bubble, we use the equation 

dpg 37pgh + 3(3' 1) OT 9 , 
dt = ~ f Ag--~-r r=~ (9/ 

where the heat flux on the bubble surface is determined from the solution of the interior thermal problem: 

{ OTg OTg ~ 1 0.0. ( OTg ~ - 1  OTg r dpg 
Cpgpg ~-~- -]- Wg Or ) ----- -~ Ork'~gr2 dpg "~ 

7Pc Or 37Pc dt 
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Here cpg , As, % and pg are the specific heat (at constant pressure), thermal conductivity, Poisson's ratio, and 
gas density, respectively. 

System (9), (10) was solved numerically simultaneously with Eqs. (5) for the radius, where pa = 
pg - 2~r/a. The external pressure was taken in the form PI = po - A p l  sin (wt), lest the problem is solved in 
the full formulation and the relation between pR and PI is used. 

The ordinary differential equations (5) and (9) were solved by the Runge-Kutta  method of fifth-order 
accuracy, and the temperature distribution inside the bubble was obtained using an implicit scheme of the 
second order for time and space. 

Figures 5 shows results of calculations for an argon bubble of radius 10 #m oscillating with a frequency 
of 21 kHz and an amplitude of 1.5 bar under the action of pressure PI for one oscillation period of this pressure 
( t f  = 27r/w). One can see in Fig. 5a that during the major portion of the period, which corresponds to bubble 
expansion, the bubble remains isothermal [T0(0, t) ~ To]). In adiabatic expansion of the gas bubble, other 
conditions being the same (Fig. 5b), the bubble temperature would reach extremely small values (--,5 K). In 
compression, the maximum temperature at the center of the bubble is much higher (-,,68000 K) than that  
for the adiabatic case (,-,18000 K). As an illustration of this phenomenon, Fig. 5c shows the total heat flux 

t 

from the liquid to the bubble A E  = / 4~ra2~g(OT/Or)a dr, referred to the internal energy of the unperturbed 
0 

bubble E0 = (4/3)Tra~pgocg~To. It can be seen that during expansion, the bubble draws a considerable portion 
of energy from the surrounding liquid (thermal pump). During compression, the bubble releases greater energy 
than that  it previously drew from the liquid. The difference between the delivered and released energies is the 
energy loss by the system, defined as A E I / E o .  

This effect was first mentioned in [13] for larger bubbles and lower pressure amplitudes (0.93 bar), for 
which bubble compressions and expansions were not as strong as those in the given case, and the difference 
between the maximum temperatures calculated with allowance for the solution of the thermal problem and 
in an adiabatic approximation was much lower (3000 and 1328 K). 

It is expected that  the thermal pump effect would play an important role in oscillations of small 
(,-,4 #m) sonoluminescent bubbles. 

Conclus ions .  (1) The bubble-oscillation process can be divided into two stages. The first stage 
corresponds to low Mach numbers, where the bubble's surface velocity is much lower than the speed of 
sound in the liquid; the second stage corresponds to the moments of rapid strong compression and rapid 
expansion of the bubble, where the bubble's surface velocity is comparable to or even exceeds the local speed 
of sound in the liquid. 

The first stage takes almost the entire oscillation period (-,40 -5 see), and the second stage is very 
short (,-~10 -s see). Nevertheless, over tl~is short period, bubble supercompression occurs and the temperature 
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inside the bubble increases to such an extent that  luminescence of the gas is possible. 
(2) For low Mach number regimes, two asymptotic relations are valid. The first asymptotic relation 

follows from the solution of the linear wave equation and describes the motion of the liquid away from the 
bubble; the second asymptotic relation describes the motion of the liquid in the boundary layer near the 
bubble and corresponds to the solution of the Laplace equation for an incompressible liquid. 

(3) The forced oscillations of a bubble in a compressible liquid at low Mach numbers can be described 
by the Rayleigh-Plesset or Herring-Gilmore equations. However, in these equations, the external pressure, 
namely, the pressure at local infinity around the bubble poo in the first equation and the external pressure PI 
in the second equation, differ from each other and from the pressure on the flask wall. The pressures poo and pl 
can be calculated for a known law of pressure variation on the flask wall from an ordinary differential-difference 
equation, as shown in this paper. 

4. The amplitudes of the pressure at local infinity Apoo and the external pressure Api can be much 
higher than the pressure amplitude on the flask wall ApR. This is a result of strengthening of spherical 
acoustic waves moving from the flask wall to the bubble. The greatest strengthening, completely or partially 
compensated by bubble expansion and compression, is observed at the flask resonance frequencies, 
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